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LETTER TO THE EDITOR 

Self-consistent solution for the self-avoiding walk 

H P Gillis? and Karl F Freed$ 
The James Franck Institute and The Department of Chemistry, The University of Chicago, 
Chicago, Illinois 60637, USA 

Received 22 April 1974 

Abstract. An improved solution is obtained to Edwards’ self-consistent field formulation of 
the self-avoiding walk problem, and the dominant part of the solution is shown to be self- 
consistent. The asymptotic form of the mean-square end-to-end separation of the walk is 
obtained. The results are compared with those of a recent analysis based on renormalization 
group techniques. 

The self-avoiding walk (SAW) appears in theoretical studies of critical phenomena in 
lattice models and the dimensions of long polymers. There are very few exact results 
for the SAW; most information comes from numerical work on lattice models (Domb 
1969). Theories which treat the self-interaction as a perturbation appear to be un- 
satisfactory (Domb and Joyce 1972). 

Flory (1949) introduced a self-consistent field (SCF) theory for the polymer and 
obtained an approximate solution (not shown to be self-consistent). Flory’s mean-field 
approximation to the SCF predicts that ( R ’ ) ,  the mean-square end separation of a 
walk of length L in d dimensions, has the asymptotic behaviour L’”, where v = 3/(d + 2) 
for 1 < d < 4 and v = f- for d > 4 (Fisher 1966,1969). Edwards (1965,1967) introduced 
a more sophisticated version of the SCF theory, based on the method of functional 
integration, which reproduced the ‘Flory result’. His assumptions were not clearly set 
forth, several mathematical approximations were not assessed, and the question of self- 
consistency was not raised. Subsequently the formal structure of Edwards’ theory was 
worked out;  the coupled Hartree equations were derived, and the importance of the 
symmetry of the mean field was pointed out (Freed 1971, 1972a). 

This letter reports a solution to the formal theory of Edwards. The dominant part 
of the solution is shown to be self-consistent. The Flory result is recovered, and the 
nature of the approach to the asymptotic limit is elucidated. A fuller account of these 
results will be presented elsewhere (Gillis 1973, Gillis and Freed 1974). 

The SAW is represented as a diffusion path (continuous random walk) ds), 0 < s < L, 
with the ‘self-avoiding’ interaction V[u(s)- ~(s’)] between any pair of points along the 
walk (Edwards 1965, 1967, Freed 1971, 1972a). The number of walks which end at R 
having started at 0, denoted by G(R0; LO), is the average of the functional 
exp( -JkJk ds ds‘V[r(s)-ds’)]) over all diffusion paths which end at d L )  = R, ie the 
integral of this functional with the conditional Wiener measure (Gel’fand and Yaglom 
1960). This functional integral represents a hierarchy of Green functions instead of the 
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usual closed diffusion equation (Freed 1971,1972a). The hierarchy is closed by applying 
a functional version of the method of random fields familiar in the infinite-range Ising 
model (Edwards 1965, 1967, Freed 1971, 1972a). This closure shows that 

G(R0 ; LO) = (B(RO ; LO[4]))4 
where 0[4] is the causal Green function for a closed diffusion equation with the field 
$(It). Evaluating this average over random fields by steepest descents in function space 
gives the approximation that G ‘v 0[4,] and an equation for the saddle-point 4,. Thus 
the coupled equations 

i#,(r; L)  = ds‘ dR’V(r-R’)Q(RR’; s-s’[4,])B(R’O; s0[$~,])[B(Rr;  S S ‘ [ ~ , ] ) ] - ~  (2) 

represent the formal SCF theory to be solved (Freed 1971,1972a). The right-hand side of 
(2) is just J dR’V(r-R’)p(R’), where p(R’) is the density of walks at R‘, so (1) and (2) 
represent the usual Hartree-type SCF theory. ( I  is the effective step length of the walk 
(Freed 1971, 1972a).) I t  is clear from (2) that the effective field at any space point r 
depends on L and on the point R = r(L). Therefore, in general the effective field will have 
ellipsoidal symmetry, with the foci at 0 and R. 

I t  is convenient to reformulate the SCF theory in E space, where E is the variable 
conjugate to L (Freed 1972b). The average over fields can be written in terms of an 
eigenfunction expansion for 0[4] 

I 5 

W O  ; LO) = Iom dEp(E) exp( - ELK$(R; E[41)$+(0; E[+]))+, (3) 

where p [ E ]  is the density of states and the eigenfunctions $ satisfy 

(4) 1 1 ( - 5 ~ 2  + i4(r) - E $(r ; E[41) = 0. 

Steepest descents evaluation of ($[4]$+[4])+ in (3) leads to 

coupled with (4) for $[4,] and ( -&1V2 +i$, -E)Y[4,] = d(r-r‘). (In obtaining both 
( 5 )  and (2) the usual replacement V(r-u’) -, ud(r-r’), which corresponds to using a 
soft self-avoiding interaction, was made (Freed 1971, 1972a).) 

An approximate expression fori&, can be obtained from the formal theory. It can then 
be used to start an iterative solution to (4) and (5) and to (1) and (2). The procedure is to 
postulate an explicit but approximate functional solution $[4] to (4), eg, WKB functions, 
put this $[$I] into (3), and then do the steepest descents to find an explicit but approxi- 
mate equation for the ‘saddle-point‘ i4,. Then i4, can be used directly in (4) to construct 
$[Bo]  and S[$,]. Finally, these are put into ( 5 ) .  If the right-hand side gives back the 
iBo found by steepest descents, the theory is self-consistent. This program can be 
carried out analytically in terms of WKB functions only for cases where (4) is separable to 
one-dimensional motions. Thus the general case (ellipsoidal symmetry) does not yield 
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to solution in this manner. Henceforth, the discussion is restricted to a closed walk 
(R 

Since physical arguments (Edwards 1965, 1967) indicate that i40(v;E) is a non- 
negative, monotonically decreasing function of Y, only the ‘s waves’ contribute to (5). 
The latter $[4] can be written as (Abramowitz and Stegun 1964): 

0), for which the effective field is spherical. 

Here Ai is the Airy function, which represents the uniform semi-classical approximation 
that is free from the divergences which plague WKB functions at turning points. r ,  is 
the ‘classical turning point’, at which ~ ( r ’ ;  E [ 4 ] )  = 0. Putting (6) with R 0 into (3) 
and doing the steepest descents gives the saddle-point equation 

-i40(r; 4x1’ E )  = O ( r , - r )  - i&+-- E)]“’, 
U’ [:( 24r2 

where 8 is the usual step function (Freed 1972b). For r 5 I ,  (8) has the dominant solution 
i & ,  x r - ‘ ,  which is the same as for the purely random walk (Edwards 1965,1967). This 
happens here because the Wiener measure is inappropriate for short walks. Therefore, 
the SCF theory is poor for short distances. For I 5 r < r , ,  the ‘Langer correction’ 1/24? 
can be dropped (Messiah 1959). Then R = iq50/E satisfies the equation 

.,3 

E 3 r 4  R3-Q’ +i = 0, (9) 

where y E (v/4xlZ)’6/1 and r,  + a. Thus R is a function only of the dimensionless 
parameter Er4’3y- As E + 0, the one real, positive root of (9) goes as yr-4’3. (Edwards 
found this E = 0 solution for (1) and (2) from an integral equation (Edwards 1965,1967)) 

To demonstrate self-consistency of the leading term in the solution, it is sufficient to 
use i$o - ,ir-4’3 in (4) as proposed above. Finally, the right-hand side of (5) gives back 

i$o(r; E )  = ,irr-4’3[1 +O(r’I3)]. (10) 

The leading term in the solution is therefore self-consistent. Furthermore, yr-4/3 can be 
used in (1) and (2) in a similar way to show that 

(1 1) 

This also demonstrates the self-consistency of the leading term in Edwards‘ theory (1) 
and (2) (Edwards 1965, 1967). 

In (2) and (5 ) ,  Green functions appear which refer to only a part of the walk. They 
satisfy (1) and (4) with the same i40 which determines the Green function for the entire 
walk. Therefore, to the extent that an open walk can be represented as a piece of long 
closed loop, its Green function can be approximated by a solution of (1) or (4) with the 
mean field from (5)t. In d dimensions, the leading term in the field is r-2(d-1)/3.  For 
d > 4, it is more singular than r - 2  as r + 0, and the walk cannot return to the origin. This 
is consistent with Rubin‘s observation (Rubin 1953) that for d > 4 diffusion paths are 
self-intersecting only on a set of measure zero, and hence that v = $ for d > 4. In 

i4,(r; L )  K r-4’3[1 + 0(r1I3)].  

t The justification for the consideration of part of a long closed loop has been given by des Cloiseaux (1970). 
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d (<4) dimensions, Q is a function only of the dimensionless variable z ~ r r E ~ ( ~ - ' ) ' ~ .  
where c1 is a constant. For r z r , ,  the Langer correction is negligible in the 'action 
integral' in (7). Then the integral is a function only of z. This shows that ICId(R; E)$+(O ; E) 
constructed from (4) with the spherical mean field depends on R only through z. I t  can 
then be shown (by steepest descents integration as L + CO) that 

@d(RO; L O [ ( $ O ] )  = 1 dEdE) exp(-EL)II/d(R; E[41)Ic/:(0; 

is a function of R only through the dimensionless variable jRL-3 ' (2+d) ,  where j is 
another constant. This implies the Flory result. Corrections to this asymptotic 
dependence can be worked out explicitly for d = 2 , 3  ; they are consistent with 

( R 2 )  ~ 6 / ( 2 + 4 [ 1  + ~ , ( d ) L - ( 4 - d ) l ( Z + d ) + i , 2 ( d ) L - 2 ( 4 - d ) / ( 2 + d ) +  . . .] 1 < d < 4. (12) 

De Gennes (1972) found that the E expansions for v found by the Wilson method and 
from the Flory result had different coefficients in first order. The meaning of this 
discrepancy is not yet clear. The Flory result gives an explicit function vF(c), whereas 
the Wilson expansion may not represent v exactly, since V(E) may not be a branch of an 
analytic function (J des Cloiseaux, private communication). 
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